UNIT – III
VHDL INTRODUCTION AND LANGUAGE FUNDAMENTALS

1. Introduction to VHDL

1.1 VHDL Application

2. VHDL Program Structure

2.1 Entity Block
2.2 Architecture Block

3. VHDL Operators
4. Packages

4.1 Package Declaration
4.2 Package Body
4.3 Important Packages

5. Data Types
6. Process
7. Sequential Statements

7.1 Wait Statement
7.2 Assertion Statement
7.3 Report Statement
7.4 Signal Assignment Statement
7.5 Variable Assignment Statement
7.6 Procedure Call Statement
7.7 If Statement
7.8 Case Statement
7.9 Loop Statement
7.10 Next Statement
7.11 Exit Statement
7.12 Return Statement
7.13 Null Statement

8. Concurrent Statements

8.1 Block Statement
8.2 Generate Statement

9. Component

9.1 Component declaration
9.2 Component Instantiation and interconnections

10. Functions
11. Procedures

[image:]

[bookmark: page2][bookmark: page3][image:]1. An Introduction to VHDL

VHDL is an acronym for Very high speed integrated circuit (VHSIC) Hardware Description Language which is a programming language that describes a logic circuit by function, data flow behavior, and/or structure. This hardware description is used to configure a programmable logic device (PLD), such as a field programmable gate array (FPGA), with a custom logic design.

The general format of a VHDL program is built around the concept of BLOCKS which are the basic building units of a VHDL design. Within these design blocks a logic circuit of function can be easily described.

A VHDL design begins with an ENTITY block that describes the interface for the design. The interface defines the input and output l1ogic signals of the circuit being designed. The ARCHITECTURE block describes the internal operation of the design. Within these blocks are numerous other functional blocks used to build the design elements of the logic circuit being created.
[image:]
After the design is created, it can be simulated and synthesized to check its logical operation. SIMULATION is a bare bones type of test to see if the basic logic works according to design and concept. SYNTHESIS allows timing factors and other influences of actual field programmable gate array (FPGA) devices to effect the simulation thereby doing a more thorough type of check before the design is committed to the FPGA or similar device.

1.1 VHDL Application

VHDL is used mainly for the development of Application Specific Integrated Circuits (ASICs). Tools for the automatic transformation of VHDL code into a gate-level net list were developed already at an early point of time. This transformation is called synthesis and is an integral part of current design flows.

For the use with Field Programmable Gate Arrays (FPGAs) several problems exist. In the first step, Boolean equations are derived from the VHDL description, no matter, whether an ASIC or a FPGA is the target technology. But now, this Boolean code has to be

[bookmark: page4]partitioned into the configurable logic blocks (CLB) of the FPGA. This is more difficult than the mapping onto an ASIC library. Another big problem is the routing of the CLBs as the available resources for interconnections are the bottleneck of current FPGAs.

While synthesis tools cope pretty well with complex designs, they obtain usually only suboptimal results. Therefore, VHDL is hardly used for the design of low complexity Programmable Logic Devices(PLDs).

VHDL can be applied to model system behavior independently from the target technology. This is either useful to provide standard solutions, e.g. for micro controllers, error correction (de-)coders, etc, or behavioral models of microprocessors and RAM devices are used to simulate a new device in its target environment.

An ongoing field of research is the hardware/software co design. The most interesting question is which part of the system should be implemented in software and which part in hardware. The decisive constraints are the costs and the resulting performance.
[image:]
2 VHDL Program Structure
[image:]

entity entity-name is [port(interface-signal-declaration);]

end [entity] [entity-name];

[bookmark: page5]architecture architecture-name of entity-name is [declarations]

begin architecture body

end [architecture] [architecture-name];

2.1 ENTITY BLOCK

An entity block is the beginning building block of a VHDL design. Each design has only one entity block which describes the interface signals into and out of the design unit. The syntax for an entity declaration is:

entity entity_name is

port (signal_name,signal_ name : mode type; signal_name,signal_name : mode type);
end entity_name;

An entity block starts with the reserve word entity followed by the entity_name. Names and identifiers can contain letters, numbers, and the under score character, but must begin with an alpha character. Next is the reserved word is and then the port declarations. The indenting shown in the entity block syntax is used for documentation purposes only and is not required since VHDL is insensitive to white spaces.
[image:]
A single PORT declaration is used to declare the interface signals for the entity and to assign MODE and data TYPE to them. If more than one signal of the same type is declared, each identifier name is separated by a comma. Identifiers are followed by a colon (:), mode and data type selections.

In general, there are five types of modes, but only three are frequently used. These three will be addressed here. They are in, out, and inout setting the signal flow direction for the ports as input, output, or bidirectional. Signal declarations of different mode or type are listed individually and separated by semicolons (;). The last signal declaration in a port statement and the port statement itself are terminated by a semicolon on the outside of the port's closing parenthesis.

[bookmark: page6]The entity declaration is completed by using an end operator and the entity name. Optionally, you can also use an end entity statement. In VHDL, all statements are terminated by a semicolon.

Here is an example of an entity declaration for a set/reset (SR)

latch:

entity latch is

port (s,r : in std_logic; q,nq : out std_logic);

end latch;

The set/reset latch has input control bits s and r which are define d as single input bits and output bits q and nq. Notice that the declaration does not define the operation yet, just the interfacing input and output logic signals of the design. A design circuit's operation will be defined in the architecture block.

We can define a literal constant to be used within an entity with the generic declaration, which is placed before the port declaration within the entity block. Generic literals than can be used in port and other declarations. This makes it easier to modify or update designs. For instance if you declare a number of bit _vector bus signals, each eight bits in length, and at some future time you want to change them all to 16-bits, you would have to change each of the bit_vector range. However, by using a generic to define the range value, all you have to do is change the generic's value and the change will be reflected in each of the bit_vectors defined by that generic. The syntax to define a generic is:
[image:]
generic (name : type := value);

The reserved word generic defines the declaration statement. This is followed by an identifier name for the generic and a colon. Next is the data type and a literal assignment value for the identifier. := is the assignment operator that allows a literal value to be assigned to the generic identifier name. This operator is used for other assignment functions as we will see later.

For example, here is the code to define a bus width size using a generic literal.

[bookmark: page7]entity my processor is generic (busWidth : integer := 7);

Presently, busWidth has the literal value of 7. This makes the documentation more descriptive for a vector type in a port declaration:

port(data_bus : in std_logic_vector (busWidth downto 0); q-out : out std_logic_vector (busWidth downto 0));

In this example, data_ bus and q _out have a width of eight (8) bits (7 down to 0). When the design is updated to a larger bus size of sixteen (16) bits, the only change is to the literal assignment in the generic declaration from 7 to 15.

2.2 ARCHITECTURE BLOCK

The architecture block defines how the entity operates. This may be described in many ways, two of which are most prevalent:

STRUCTURE and DATA FLOW or BEHAVIOR formats. The
BEHAVIOR approach describes the actual logic behavior of the circuit. This is generally in the form of a Boolean expression or process. The STRUCTURE approach defines how the entity is structured - what logic devices make up the circuit or design. The general syntax for the architecture block is:
[image:]
architecture arch_name of entity_name is declarations;

begin
statements defining operation; end arch_name;

example, we will use the set/reset NOR latch of figure 1. In VHDL code listings, -- (double dash) indicates a comment line used for documentation and ignored by the compiler.
[image:]
[bookmark: page8]
library ieee;

use ieee.std_logic_1164.all;
· entity block entity latch is
· interface signal declarations port (s,r : in std_logic;
q,nq : out std_logic);
end latch;
· architecture block architecture flipflop of latch is begin
· assignment statements q <= r nor nq;
nq <= s nor q;

end flipflop;

The first two lines imports the IEEE standard logic library std_logic_1164 which contains predefined logic functions and data types such as std_logic and std_logic_vector. The use statement determines which portions of a library file to use. In this example we are selecting all of the items in the 1164 library. The next block is the entity block which declares the latch's interface inputs, r and s and outputs q and nq. This is followed by the architecture block which begins by identifying itself with the name flipflop as a description of entity latch.
[image:]
Within the architecture block's body (designated by the begin reserved word) are two assignment statements. Signal assignment statements follow the general syntax of:

signal_identifier_name <= expression;

The <= symbol is the assignment operator for assigning a value to a signal. This differs from the := assignment operator used to assign an initial literal value to generic identifier used earlier.

In our latch example, the state of the signal q is assigned the logic result of the nor function using input signals r and nq. The nor operator is defined in the IEEE std_logic_1164 library as a standard VHDL function to perform the nor logic operation. Through the use of

[bookmark: page9]Boolean expressions, the operation of the NOR latch's behavior is described and translated by a VHDL compiler into the hardware function appearing in figure 1.

3. VHDL Operators

Predefined VHDL operators can be grouped into seven classes:

1. binary logical operators: and or nand nor xor xnor

and logical and result is boolean,

nand logical complement of and result is boolean, nor logical complement of or result is boolean, xor logical exclusive or result is boolean,

xnor logical complement of exclusive or result is boolean,

2. relational operators:

· test for equality, result is boolean /= test for inequality, result is boolean < test for less than, result is boolean

<= test for less than or equal, result is boolean > test for greater than, result is boolean
>= test for greater than or equal, result is Boolean
[image:]

3 shift operators:

sll shift left logical, srl shift right logical, sla shift left arithmetic,

sra shift right arithmetic, rol rotate left,

ror rotate right,

4. adding operators:

	+
	addition,
	numeric + numeric,
	result numeric

	-
	subtraction,
	numeric - numeric,
	result numeric

& concatenation, array or element & array or element, result array

[bookmark: page10]5. unary sign operators:

	+
	unary plus,
	
	+ numeric,
	result numeric

	-
	unary minus,
	
	- numeric,
	result numeric

	6. multiplying operators:
	
	
	
	
	

	*
	multiplication,
	numeric * numeric, result numeric

	/
	division,
	numeric / numeric, result numeric

	mod modulo,
	
	
	integer mod integer,
	result integer

	rem remainder,
	
	
	integer rem integer,
	result integer

	7. miscellaneous operators:
	
	
	
	

	abs absolute value,
	abs numeric, result numeric

	not complement,
	
	not logic or boolean, result same

	**
	exponentiation,
	numeric ** integer,
	result numeric

[image:]

HIGHEST PRECEDENCE

Highest precedence first, left to right within same precedence Group,use parenthesis to control order.Unary operators take an operand on the right.Binary operators take an operand on the left and right.

Here are some examples of the use of VHDL operators

entity Operator_1 is end; architecture Behave of Operator_1 is begin process

variable b : BOOLEAN; variable bt : BIT := '1'; variable i : INTEGER; variable pi : REAL := 3.14; variable epsilon : REAL := 0.01;

variable bv4 : BIT_VECTOR (3 downto 0) := "0001"; variable bv8 : BIT_VECTOR (0 to 7);
begin

b := "0000" < bv4;	-- b is TRUE, "0000" treated as BIT_VECTOR.
	b := 'f' > 'g';
	-- b is FALSE, 'dictionary' comparison.

	bt := '0' and bt;
	-- bt is '0', analyzer knows '0' is BIT.

	bv4 := not bv4;
	-- bv4 is now "1110".

	i := 1 + 2;
	-- Addition, must be compatible types.

	[bookmark: page11]i := 2 ** 3;
	-- Exponentiation, exponent must be integer.

	i
	:= 7/3;
	-- Division, L/R rounded towards zero, i=2.

	i
	:= 12 rem 7;
	-- Remainder, i=5. In general:

· L rem R = L-((L/R)*R).
ii := 12 mod 7;-- modulus, i=5. In general:
· L mod R = L-(R*N) for an integer N.
-- shift := sll | srl | sla | sra | rol | ror (VHDL-93 only)
bv4 := "1001" srl 2; -- Shift right logical, now bv4="0100". -- Logical shift fills with T'LEFT.
bv4 := "1001" sra 2; -- Shift right arithmetic, now bv4="0111".
· Arithmetic shift fills with element at end being vacated. bv4 := "1001" ror 2; -- Rotate right, now bv4="0110".
· Rotate wraps around.
· Integer argument to any shift operator may be negative or zero. if (pi*2.718)/2.718 = 3.14 then wait; end if; -- This is unreliable.
if (abs(((pi*2.718)/2.718)-3.14)<epsilon) then wait; end if; -- Better. bv8 := bv8(1 to 7) & bv8(0); -- Concatenation, a left rotation.

wait; end process; end;
[image:]

4. Packages

A package is used as a collection of often used data types, components, functions, and so on. Once these objects are declared and defined in a package, they can be used by different VHDL design units. In particular, the definition of global information and important shared parameters in complex designs or within a project team is recommended to be done in packages.

It is possible to split a package into a declaration part and the so-called body. The advantage of this splitting is that after changing definitions in the package body only this part has to be recompiled and the rest of the design can be left untouched. Therefore, a lot of time consumed by compiling can be saved.

[bookmark: page12][image:]

4.1 Package Declaration

As the name implies, a package declaration includes all globally used declarations of types, components, procedures and functions. A possible package declaration is presented by means of an example:
[image:]
Example:

package MY_PACK is

type SPEED is (STOP, SLOW, MEDIUM, FAST); component HA

port (I1, I2 : in bit; S, C : out bit); end component;
constant DELAY_TIME : time;
function INT2BIT_VEC (INT_VALUE : integer) return bit_vector;

end MY_PACK;

The name of this package is MY_PACK. It consists of different declarations, such as a type SPEED, a component HA, and so on. Attention should be paid to the declaration of the constant DELAY _TIME and the function INT2BIT_VEC which are declared but are not defined. Their definitions will be done in the package body but it would be possible to define the constant DELAY_TIME in the package declaration part as well. The definition of functions must be done in a package body.

[bookmark: page13]4.2 Package Body

In the package body the definition of functions and procedures that were only declared in the package declaration must be specified. Constants which were declared only must get a value assigned to them in the package body.

The body of the package MY_PACK could be defined as:

Example:

package body MY_PACK is
constant DELAY_TIME : time := 1.25 ns; function INT2BIT _VEC (INT_VALUE : integer) return bit_vector is
begin

-- sequential behavioral description (omitted here) end INT2BIT_VEC;

end MY_PACK;

The binding between the package declaration and the body is established by using the same name. In the above example it is the package name MY_PACK.
[image:]

4.3 Important Packages

There are four important packages often used in VHDL descriptions.

STANDARD:

The package STANDARD is usually integrated directly in the simulation or synthesis program and, therefore, it does not exist as a VHDL description. It contains all basic types: boolean, bit, bit_vector, character, integer, and the like. Additional logical, comparison and arithmetic operators are defined for these types within the package.

The package STANDARD is a part of the STD library. Thus, it does not have to be explicitly included by the use statement.

TEXTIO:

The package TEXTIO contains procedures and functions which are needed to read from and write to text files.

[bookmark: page14]This package is also a part of the library STD. It is not included in every VHDL description by default. Therefore, if required, it has to be included by the statement use STD.TEXTIO.all;.

STD_LOGIC_1164:

The STD_LOGIC_1164 package has been developed and standardized by the IEEE. It introduces a special type called std_ulogic which has nine different logic values. The reason for this enhancement is that the type bit is not suitable for the precise modeling of digital circuits due to the missing values, such as uninitialized or high impedance.

The type std_ulogic consists of the following elements:

Declaration:

type std_ulogic is (

'U',	-- uninitialized
'X',	-- forcing unknown

'0',	-- forcing 0

'1',	-- forcing 1
'Z',	-- high impedance

'W',	-- weak unknown
[image:]
'L',	-- weak 0
'H',	-- weak 1

'-'); -- "don't care"

Besides this type used for modeling single wires other types are declared in the STD_LOGIC_1164 package. Frequently used in descriptions of bus systems are the types std_ulogic_vector and std_logic_vector.

The use of the types std_ulogic and std _logic is strongly recommended. The package STD_LOGIC_1164, if it is available on the system installation, is usually be kept in the logical library IEEE. It could be referenced with the two statements:

Syntax: library IEEE;

use IEEE.STD_LOGIC_1164.all;

STD_LOGIC_ARITH or NUMERIC_STD:

Two additional packages, STD_LOGIC_ARITH (provided by SYNOPSYS) and NUMERIC_STD (provided by the IEEE), represent an additional part for the STD_LOGIC_1164 package. They contain basic

[bookmark: page15]arithmetic functions to enable calculations and comparisons based on the types std_ulogic_vector and std_logic _vector. These types represent buses - a bunch of signal lines - whose state can be interpreted as a binary or as a two's complement number. Therefore, it is necessary to specify which number representation is valid for a given bus system. This can be done by a conversion into the data types unsigned and signed. The appropriate conversion functions are also defined in these packages.

Example:

library IEEE;

use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
architecture DETAILED of EXAMPLE is signal A, B : std_logic_vector (7 downto 0); signal SUM : std_logic_ vector (8 downto 0); signal SUM_S : signed (8 downto 0);

signal PROD : std_logic_vector (15 downto 0); signal PROD_S :signed (15 downto 0);
begin
· extension by one digit, conversion into a two's
· complement number and calculation of the sum: SUM_S <= signed(A(7) & A) + signed(B(7) & B);

· conversion to 9 bit std_logic_vector:
[image:]
SUM <= conv_std_logic_vector(SUM_S, 9);

· calculation of the product: PROD_S <= signed(A) * signed(B);

· conversion to 16 bit std_logic_vector:

PROD <= conv_std_logic_vector(PROD_S, 16); end DETAILED;

In the above example the sum and the product of the two busses A and B are calculated. Because the width of the resulted sum is the same as those of the operands, the width of A and B has to be extended by one bit in order to avoid an overflow. Since both A and B are two's complement numbers their MSB's have to be doubled. This is achieved by the catenations A(7) & A and B(7) & B. After converting signals A and B with the signed(...) and adding, the result is assigned to a temporary signal SUM_S. This signal is then converted back to a 9 bit wide bus of the type std_logic_vector with the function conv_std _logic _vector(SUM_S, 9). For the multiplication, the width of the result is 16 bit, which is equal to the sum of the widths of the

[bookmark: page16]operands A and B. The appropriate information is required in the conversion of PROD_S to PROD.

5. Data Types

VHDL is a very strongly typed language. It does not allow a lot of intermixing of data types. The idea here is that since you are describing a piece of hardware, you need to keep things like signals and numbers separate. We shall start by looking at the different types of data that can be used with VHDL which include bits, buses, boolean, strings, real and integer number types, physical, and user defined enumerated types.

Defining Signals

There are two data types used for defining interfacing and interconnecting signals - bits and bit_vectors. The bit type defines a single binary bit type of signal like RESET or ENABLE. It is used anytime you need to define a single control or data line. For multiple bus signals, such as data or address buses, an array called a bit vector is used. Bit vectors require a range of bits to be defined and has the syntax: bit vector (range)
[image:]
The range for a bit vector is defined from the least significant bit (LSB) to the most significant bit (MSB) and can be set to go from one to the other in ascending or descending order by using: LSB to MSB or MSB downto LSB. Here are some examples of bit vector forms:

addressbus(0 to 7); databus(15 downto 0);

The first defines an 8- bit address bus from addressbus(0) to addressbus(7). The second, a data bus from databus(15) downto databus(0).

The Boolean Type

The Boolean type has only two values: TRUE (1) and FALSE (0) and is usually used to hold the results of a comparison or the basis for conditional statement results.

Numerical Types

Number types that are usable in VHDL code are INTEGERS and REALS. Integers are signed numbers and reals are used for floating point

[bookmark: page17]values. The range of values for both number types is somewhat dependent on the software application being used.

Subtyping

VHDL provides a method to create a version of an existing type with a specified range of values by using the SUBTYPE declaration. A typical example of the use and syntax of this operation is:

subtype SHORTINT is integer range 0 to 255; which creates an integer type, SHORTINT with a specified range of values from 0 to 255. This is NOT a new or enumerated (user) type which we shall describe next, but rather a modified existing type.

Enumerated or User Data Type

An enumerated data type provides a means for creating and defining user types. They are declared using the TYPE operator with syntax of:

TYPE type_name (type values);

Once the data type has been declared, then it can be used in a variable declaration (discussed later). For example, here is a declaration for a data type called MONTHS:
[image:]
TYPE MONTHS (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC);

A variable declared to be of type MONTHS can have anyone of the twelve values indicated in the parenthesis.

Other Data Types

VHDL specifications include additional data types that are used in the behavioral description of a circuit design. These types are:

A. Arrays are single or multidimensional enumerated array types and the std_logic_vector type.
B. An access type acts like a pointer type and has limited use.
C. A file type is used to access a file.

D. [bookmark: page18]A physical type is used to specify finite quantities such as time, voltage, etc. This type includes units of measure such as milliseconds (ms) and volts.

E. Time units used with the physical type are:

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

primary unit is fs................femtosecond
ps = 1,000 fs....................picosecond
ns = 1,000 ps...................nanosecond

us = 1,000 ns...................microsecond
ms = 1,000 us..................millisecond
sec = 1,000 ms................second
min = 60 sec....................minute

hour = 60 min...................hour

F. The line type is an ASCII string of characters.
G. A record contains a collection of multiple data types.

This has been a summary of the data types used by VHDL. As we progress, we will see how most are implemented in VHDL design code.

Example

architecture RTL of TRAFFIC_LIGHT is
[image:]
type T_STATE is

(INIT,RED,REDYELLOW,GREEN,YELLOW); signal STATE, NEXT_STATE : T_STATE;

signal COUNTER: integer;

constant END_RED : integer := 10000; constant END_GREEN : integer := 20000;

begin

LOGIC : process (STATE, COUNTER) begin

NEXT_STATE <= STATE; case STATE is
when RED	=>

if COUNTER = END_RED then

NEXT_STATE <= REDYELLOW ; end if;

when REDYELLOW	=> -- statements

[bookmark: page19]when GREEN	=> -- statements

when YELLOW	=> -- statements

when INIT	=> -- statements
end case;

end process LOGIC;

end RTL;

6. PROCESS

Statements within architecture blocks, to this point, are executed concurrently - that is at the same time. Also, there is no way to synchronize their execution with clocking or any other kind of signals. To incorporate sequential statement execution and some manner of synchronization, we need to use a PROCESS block whose general syntax form is:

process_name : process (sensitivity list) variable variable_names : variable_type; begin

statements; end process;
[image:]
EXAMPLE:

entity AND_OR_XOR is port (A,B : in bit;
Z_OR, Z_AND, Z_XOR : out bit); end AND_OR_XOR;

architecture RTL of AND_OR_XOR is begin

A_O_X: process (A, B) begin
[image:][image:]Z_OR <= A or B; Z_AND <= A and B; Z_XOR <= A xor B; end process A_O_X ;

end RTL;

Process statements are placed in the architecture block of our design. The process_name and variable declarations are optional. Process names are

[bookmark: page20]handy if your design contains more than one process. Variable declarations are used to define a variable local to and used by the process. Variable declarations are added in the declaration area preceding the body of the process block. In contrast to a signal, variable declarations define memory locations, identified by variable identifier names, used to store results of expressions. Signals, by their nature, cannot be used to perform arithmetic manipulations such as incrementing or decrementing their value while variables can be operated on mathematically. The variable assignment operator is := which is the same one used for assigning initial literal values. The syntax for a variable assignment is:

variable_identifier := expression;

To evaluate expressions used in a variable declaration or process block, we must become familiar with the operators used by VHDL. Many of them are not strangers to anyone who has any kind of programming experience. In order of their precedence, they are:

Highest

() - parenthesis
[image:]
** - exponential

abs - absolute unsigned magnitude numbers

not - inversion

* - multiplication

/ - division

mod - modulo or quotient from division

rem - remainder result of division

· - identity - - negation
· - addition

- - subtraction

[bookmark: page21]& - concatenation sll - shift left logical srl - shift right logical

sla - shift left arithmetic sra - shift right arithmetic rol - rotate left

ror - rotate right = - equality

/= - not equal < - less than

> - greater than
[image:]
<= - less than or equal >= - greater than or equal

LOWEST

and - logic and or - logic or nand - logic nand nor - logic nor

xor - logic exclusive or xnor - logic exclusive nor

Now an example of a variable assignment:

cnt := cnt + 1;

[bookmark: page22]As with any other language, the expression on the right is evaluated first. In this case one is added to the variable cnt. The results are than stored back into the cnt variable indicated on the left side of the assignment statement. This one simply increments cnt by 1. To set this variable statement into a process block, the code would look like:

count : process(x)

variable cnt : integer := -1; begin

cnt := cnt + 1; end process;

The first line of the process syntax is its declaration and contains an optional parameter list, known as the sensitivity list. A process executes once at the beginning of a simulation and any time that an event occurs on an item in the sensitivity list. An EVENT is any change of state of a signal. A change of state on signal x will cause this process to execute once.

The next line is a variable declaration that is similar to a port (signal) declaration. Since it is a variable and not a port, there is no mode selection. Also, variables can be assigned an initial value using an assignment operator as shown in the example. We want cnt to start at 0, but since the process executes once upon starting simulation (without an event occurring on x), we need to initialize cnt to -1. The initial execution of the process due to the start of a simulation will set cnt to 0 by incrementing it once. After that, each time an event occurs on x, cnt will be incremented once, thus keeping track of how many times x changes state. The statements to be executed by the process body follow the begin reserved word. Finally, the process declaration is completed using an end process statement.
[image:]
Declarations within the process block and preceding the process body are executed only once - when simulation is initiated. Thereafter, when the process is run due to an event on one of the signals on the sensitivity list, only the body of the process is executed. This prevents variables from being re-initialized each time the process is run.

All statements in a process execute sequentially. Here are a couple of examples of process statements with an analysis of each:

process (Y)

variable X, Z : std_logic; begin

[bookmark: page23]X := Y;

Z := not X; end process;

This is a fairly easy appearing example, but let's take some time exploring what happens to make sure you fully grasp the difference between concurrent and sequential operation. Y is included in the sensitivity list, so it must have been declared in the design before the process statement. Variables X and Z are declared in the process block forcing these variables to be local to the process and not accessible outside of it.

To follow what happens when the process is executed, let's assume some initial values for our three variables:

ooo

Y = 1 X = 1 Z = 0

Initial values for variables can be set in the variable declaration statements using the: = assignment operator in this manner:
[image:]
variable X : std_logic := 1; variable Z : std_logic := 0;

Of course, signal Y would have to be initialized before the process statement to give it a beginning state. In this case, you would probably use an assignment statement:

Y <= '1';

Since Y has been defined as an interface signal in an entity, the <= assignment operator is required here. Assigning a literal logic state, 1 or 0, to a signal requires a single quote around the 1 or 0. This causes the software to convert the ASCII 1 or 0 to a logic state and assign it to the signal. Assigning a string of logic bit literals to a vector requires double quotes so that the ASCII string can be converted to logic states for each bit of the vector. Numerical literals will not use the quotes around it.

The sample states were not selected as randomly as you might think. I chose them to illustrate the point of sequential operation within the process. When Y changes to a 0 through some outside influence, an event occurs and the process is initiated. If the statements within the process were executed

[bookmark: page24]concurrently, they would use the initial values to produce results for all outputs. The change in Y from 1 to 0 causes X to change to a 0 because of the statement X := Y; Because X had a value of 1 initially, this value is used for the second statement in concurrent execution. This forces Z to become 1 from the statement Z := not X;.

However, the statements in the process are executed sequentially rather than concurrently. What actually occurs in the process is X becomes 0 when Y changes to 0 as it did for a concurrent execution. However, this time, Z would become 1 since the second statement in a sequential execution would use the new value of X instead of X's initial value.

Now to a more practical example use of a process which will also include a method to prevent statements within the process body from executing when simulation is first begun and an event has not yet occurred:

library ieee;

use ieee.std _logic_1164.all; entity DFF is
· Signals are initialized to 0 by default.

· To make QN a 1, it has to be initialized port (D, CLK : in std_logic;
Q : out std_logic;
QN : out std_logic := '1'); end DFF;
architecture data_flip of DFF is begin

process (CLK) begin
if (CLK = '1' and CLK'event) then Q <= D after 10ns;
QN <= not D after 10ns; end if;

end process; end data_flip;
[image:]
There is a lot going on in this short design, so let's examine it carefully. The only wrinkle in the entity block is covered by the comment lines which are always preceded by a double dash (--). Identifiers of all kinds are usually initialized by most compilers when they are declared, to 0 or null. To set QN to the opposite state of Q initially, we had to assign it an

[bookmark: page25]initially value of 1 by using: = '1' following its port declaration. The rest of the entity block is straight forward.

In the architecture block we did not require any local variables or signals so none are declared. The process block contains one signal in the sensitivity list, CLK. The only statement in the process body is an if..then..else statement. The if..then..else statement which is explored in more detail later, has a standard format of:

if condition then statements;

else statements; end if;

The else block is optional and is used when there are statements to be executed when the conditional test returns a false result. The then statements are executed when the condition rings true.

The if..then..else statement in the example has two conditions and both have to be met to execute the statements within the then block. The first condition requires the state of CLK to be high . The and operator in the condition field forces a second condition to also be true. This condition is CLK'event which says that an event must have occurred on CLK to be true. What this format really accesses is a property of the process object called an event. If the event occurred, CLK'event returns true. If no event occurred, it returns a false value. The inclusion of this condition eliminates the execution of the statements within the if block when simulation first begins since the lack of a CLK event causes CLK'event to be false. The only time the if condition will be satisfied is when an event on CLK occurred. Additionally, CLK has to be high, so this combination causes the then statements to be executed only on a positive transition (edge) of the CLK signal.
[image:]
By now, you should notice some significant difference in declaring and initializing integers and signals. The: = operator is used to assign initial values in a variable statement. Notice that for signals, single quotes are required around the initial value ('0') while none are used for an integer (0). This is because signal values are logic states and integer values are numerical. Numerical values do not require quotes.

[bookmark: page26]Also notice the difference when integer variables are assigned a value from an expression compared to a signal assignment. In a previous example we used Y <= A and B; to assign to Y the results of A and B. In this most recent example, we did a arithmetic operation on an integer value and assigned the results to it: cnt := cnt + 1; It is very easy to use the incorrect assignment symbol (:= or <=) since they look so similar.

7. VHDL Sequential Statements

There are several statements that may only be used in the body of a process. These statements are called sequential statements because they are executed sequentially. That is, one after the other as they appear in the design from the top of the process body to the bottom. In this section we will examine some of these statements

Sequential Statements

· wait statement

· assertion statement

· report statement

· signal assignment statement

· variable assignment statement

· procedure call statement

· if statement

· case statement

· loop statement

· next statement

· exit statement

· return statement

· null statement

7.1 wait statement
[image:]
Cause execution of sequential statements to wait.

[label:] wait [sensitivity clause] [condition clause] ;

wait for 10 ns;	-- timeout clause, specific time delay.

[bookmark: page27]wait until clk='1'; -- condition clause, Boolean condition wait until A>B and S1 or S2; -- condition clause, Boolean condition

wait on sig1, sig2;	-- sensitivity clause, any event on any
-- signal terminates wait

entity FF is

port (D, CLK : in bit;
Q	: out bit);

end FF;

architecture BEH_1 of FF is begin
process begin

wait on CLK;

if (CLK = '1') then Q <= D;

end if; end process;

end BEH_1;
[image:]
7.2 assertion statement

Used for internal consistency check or error message generation.

[label:] assert boolean_condition [report string] [severity name] ;

assert a=(b or c);

assert j<i report "internal error, tell someone";
assert clk='1' report "clock not up" severity WARNING;

Predefined severity names are: NOTE, WARNING, ERROR, FAILURE . Default severity for assert is ERROR.

7.3 Report statement

Used to output messages.

[label:] report string [severity name] ;

[bookmark: page28]report "finished pass1"; -- default severity name is NOTE report "Inconsistent data." severity FAILURE;

7.4 signal assignment statement

The signal assignment statement is typically considered a concurrent statement rather than a sequential statement. It can be used as a sequential statement but has the side effect of obeying the general rules for when the target actually gets updated.

In particular, a signal can not be declared within a process or subprogram but must be declared is some other appropriate scope. Thus the target is updated in the scope where the target is declared when the sequential code reaches its end or encounters a 'wait' or other event that triggers the update.

[label:] target <= [delay_mechanism] waveform ;

delay_mechanism

transport
[image:]reject time_expression inertial

waveform

waveform_element [, waveform_element]

unaffected

waveform_element

value_expression [after time_expression] null [after time_expression]

sig1 <= sig2;

Sig <= Sa and Sb or Sc nand Sd nor Se xor Sf xnor Sg; sig1 <= sig2 after 10 ns;

clk <= '1' , '0' after TimePeriod/2 ; sig3 <= transport sig4 after 3 ns;

sig4 <= reject 2 ns sig5 after 3 ns; -- increasing time order sig6 <= inertial '1' after 2 ns, '0' after 3 ns , '1' after 7 ns;

[bookmark: page29]Note: omitting [after time expression] is equivalent to after 0 fs;

7.5 Variable assignment statement

Variables can only be defined in a process and they are only accessible within this process. Variables and signals show a fundamentally different behavior. In a process, the last signal assignment to a signal is carried out when the process execution is suspended. Value assignments to variables, however, are carried out immediately. To distinguish between a signal and a variable assignment different symbols are used: ' <= ' indicates a signal assignment and ' := ' indicates a variable assignment.

[label:] target := expression ;

architecture RTL of XYZ is

signal A, B, C : integer range 0 to 7; signal Y, Z : integer range 0 to 15;
begin
[image:]process (A, B, C)

variable M, N : integer range 0 to 7; begin
M := A;
N := B;

Z <= M + N; M := C;

Y <= M + N; end process;

end RTL;

7.6 Procedure call statement

Call a procedure.

[label:] procedure-name [(actual parameters)] ;

do_it; -- no actual parameters

compute(stuff, A=>a, B=>c+d); -- positional association first,

· [bookmark: page30]then named association of

· formal parameters to actual parameters

7.7 if statement

The if condition must evaluate to a boolean value ('true' or 'false'). After the first if condition, any number of elsif conditions may follow. Overlaps may occur within different conditions. An else branch, which combines all cases that have not been covered before, can optionally be inserted last. The if statement is terminated with 'end if'.

The first if condition has top priority: if this condition is fulfilled, the corresponding statements will be carried out and the rest of the 'if - end if' block will be skipped.

if CONDITION then

-- sequential statements end if;
[image:]

if CONDITION then

· sequential statements

else

· sequential statements

end if;

if CONDITION then

· sequential statements elsif CONDITION then
· sequential statements
· · ·
else

-- sequential statements

end if;

entity IF_STATEMENT is

port (A, B, C, X : in bit_vector (3 downto 0); Z : out bit_vector (3 downto 0);

end IF_STATEMENT;

[bookmark: page31]architecture EXAMPLE1 of IF_STATEMENT is begin
process (A, B, C, X) begin

Z <= A;

if (X = "1111") then Z <= B;

elsif (X > "1000") then Z <= C;

end if; end process; end EXAMPLE1

7.8 case statement
While the priority of each branch is set by means of the query's order in the IF case, all branches are equal in priority when using a CASE statement. Therefore it is obvious that there must not be any overlaps. On the other hand, all possible values of the CASE EXPRESSION must be covered. For covering all remaining, i.e. not yet covered, cases, the keyword ' others ' may be used.
[image:]
The type of the EXPRESSION in the head of the CASE statement has to match the type of the query values. Single values of EXPRESSION can be grouped together with the '|' symbol, if the consecutive action is the same. Value ranges allow to cover even more choice options with relatively simple VHDL code.
Ranges can be defined for data types with a fixed order, only, e.g. user defined enumerated types or integer values. This way, it can be decided whether one value is less than, equal to or greater than another value. For ARRAY types (e.g. a BIT_VECTOR) there is no such order, i.e. the range "0000" TO "0100" is undefined and therefore not admissible.

case EXPRESSION is

when VALUE_1 => -- sequential statements

when VALUE_2 | VALUE_3 => -- sequential statements

when VALUE_4 to VALUE_N =>

[bookmark: page32]-- sequential statements

when others =>

-- sequential statements

end case ;

entity CASE_STATEMENT is

port (A, B, C, X : in integer range 0 to 15; Z : out integer range 0 to 15;

end CASE_STATEMENT;

architecture EXAMPLE of CASE_STATEMENT is begin

process (A, B, C, X) begin

case X is when 0 =>
Z <= A;
when 7 | 9 =>

Z <= B;
[image:]
when 1 to 5 =>
Z <= C;
when others =>
Z <= 0; end case; end process;
end EXAMPLE;

7.9 loop statement

The loop label is optional. By defining the range the direction as well as the possible values of the loop variable are fixed. The loop variable is only accessible within the loop.

For synthesis the loop range has to be locally static and must not depend on signal or variable values. While loops are not generally synthesizable.

[bookmark: page33]Three kinds of iteration statements.

[label:] loop

sequence-of-statements -- use exit statement to get out end loop [label] ;

[label:] for variable in range loop sequence-of-statements

end loop [label] ;

[label:] while condition loop sequence-of-statements
end loop [label] ;

loop input_something; exit when end_file; end loop;

example
[image:]
entity CONV_INT is

port (VECTOR: in bit_vector(7 downto 0); RESULT: out integer);

end CONV_INT;

architecture A of CONV_INT is begin
process(VECTOR) variable TMP: integer;

begin

TMP := 0;

for I in 7 downto 0 loop if (VECTOR(I)='1') then

TMP := TMP + 2**I; end if;

end loop;

RESULT <= TMP;

[bookmark: page34]end process; end A;

architecture C of CONV_INT is begin
process(VECTOR) variable TMP: integer; variable I : integer;
begin

TMP := 0;
I := VECTOR’ high;

while (I >= VECTOR’ low) loop if (VECTOR(I)='1') then

TMP := TMP + 2**I; end if;

I := I - 1; end loop;

RESULT <= TMP; end process;

end C;
[image:]
7.10 next statement

A statement that may be used in a loop to cause the next iteration.

[label:] next [label2] [when condition] ;

next;

next outer_loop; next when A>B;

next this_loop when C=D or done; -- done is a Boolean variable

7.11 exit statement

A statement that may be used in a loop to immediately exit the loop.

[label:] exit [label2] [when condition] ;

exit;

exit outer_loop; exit when A>B;

[bookmark: page35]exit this_loop when C=D or done; -- done is a Boolean variable

7.12 return statement

Required statement in a function, optional in a procedure.

[label:] return [expression] ;

return; -- from somewhere in a procedure return a+b; -- returned value in a function

7.13 null statement

Used when a statement is needed but there is nothing to do.

[label:] null ;

null;
[image:]
8. VHDL Concurrent Statements

All statements within architectures are executed concurrently. While it is possible to use VHDL processes as the only concurrent statement, the necessary overhead (process, begin, end, sensitivity list) lets designer look for alternatives when the sequential behavior of processes is not needed.

The signal assignment statement was the first VHDL statement to be introduced. The signal on the left side of the assignment operator '<=' receives a new value whenever a signal on the right side changes. The new value stems from another signal in the simplest case (i.e. when an intermediate signal is necessary to match different port modes) or can be calculated from a number of signals.

Concurrent Statements

· block statement

· process statement

· concurrent procedure call statement

· concurrent assertion statement

· concurrent signal assignment statement

· conditional signal assignment statement

· selected signal assignment statement

· component instantiation statement

· generate statement

8.1 block statement

The sub modules in an architecture body can be described as blocks. A block is a unit of module structure, with its own interface, connected to Other blocks or ports by signals. A block is specified using the syntax: block_statement ::=

block_label :
block [(guard_expression)] block_header block_declarative_part

begin block_statement_part

end block [block_label] ; block_header ::=

[generic_clause

[generic_map_aspect ;]] [port_clause
[image:]
[port_map_aspect ;]]

generic_map_aspect ::= generic map (generic_association_list) port_map_aspect ::= port map (port_association_list) block_declarative_part ::= { block_declarative_item } block_statement_part ::= { concurrent_statement }

The guard expression is not covered in this booklet, and may be omitted. The block header defines the interface to the block in much the same way as an entity header defines the interface to an entity. The generic association list specifies values for the generic constants, evaluated in the context of the enclosing block or architecture body. The port map association list specifies which actual signals or ports from the enclosing block or architecture body are connected to the block’s ports. Note that a block statement part may also contain block statements, so a design can be composed of a hierarchy of blocks, with behavioral descriptions at the bottom level of the hierarchy.

The control unit block has ports clk, bus control and bus ready, which are connected to the processor entity ports. It also has an output port for controlling the data path, which is connected to a signal declared in the architecture. That signal is also connected to a control port on the data

[bookmark: page37]path block. The address and data ports of the data path block are connected to the corresponding entity ports. The advantage of this modular decomposition is that each of the blocks can then be developed independently, with the only effects on other blocks being well defined through their interfaces.

As an example, suppose we want to describe a structural architecture of the processor entity .

architecture block_structure of processor is type data_path_control is … ;
signal internal_control : data_path_control;
begin
control_unit : block port (clk : in bit;
bus_control : out proc_control; bus_ready : in bit;

control : out data_path_control); port map (clk => clock,
bus_control => control, bus_ ready => ready; control => internal_control);
[image:]
declarations for control_unit
begin
statements for control_unit end block control _unit; data_path : block
port (address : out integer; data : inout word_32;
control : in data_path_control);

port map (address => address, data => data, control => internal_control);

declarations for data_path
begin
statements for data_path end block data_path;

end block_structure;

8.2 GENERATE

VHDL has an additional concurrent statement which can be used in architecture bodies to describe regular structures, such as arrays of blocks,

[bookmark: page38]component instances or processes. The syntax is:

generate_statement ::=

generate_label : generation_scheme generate { concurrent_statement }

end generate [generate_label] ;

generation_scheme ::=

for generate_parameter_specification if condition

The for generation scheme describes structures which have a repeating pattern. The if generation scheme is usually used to handle exception cases within the structure, such as occur at the boundaries. This is best illustrated by example.

Suppose we want to describe the structure of an adder

for i in 0 to width-1 generate ls_bit : if i = 0 generate
[image:]ls_cell : half_adder port map (a(0), b(0), sum(0), c_in(1)); end generate lsbit;

middle_bit : if i > 0 and i < width-1 generate
middle_cell : full_adder port map (a(i), b(i), c_in(i), sum(i), c_in(i+1)); end generate middle_bit;
ms_bit : if i = width-1 generate
ms_ cell : full_adder port map (a(i), b(i), c_in(i), sum(i), carry); end generate ms_bit;

end generate adder;

Adder constructed out of full-adder cells, with the exception of the least significant bit, which is consists of a half-adder.

The outer generate statement iterates with i taking on values from 0 to Width-1. For the least significant bit (i=0), an instance of a half adder component is generated. The input bits are connected to the least significant bits of a and b, the output bit is connected to the least significant bit of sum, and the carry bit is connectected to the carry in of the next stage. For intermediate bits, an instance of a full adder component is generated with inputs and outputs connected similarly to the first stage. For the most

[bookmark: page39]significant bit (i=width- 1), an instance of the half adder is also generated, but its carry output bit is connected to the signal carry.

9. COMPONENT

A structural way of modeling describes a circuit in terms of components and its interconnection. Each component is supposed to be defined earlier (e.g. in package) and can be described as structural, a behavioral or dataflow model. At the lowest hierarchy each component is described as a behavioral model, using the basic logic operators defined in VHDL. In general structural modeling is very good to describe complex digital systems, though a set of components in a hierarchical fashion.

A structural description can best be compared to a schematic block diagram that can be described by the components and the interconnections. VHDL provides a formal way to do this by

· Declare a list of components being used

· Declare signals which define the nets that interconnect components

· Label multiple instances of the same component so that each instance is uniquely defined.
[image:]
The components and signals are declared within the architecture body,

architecture architecture_name of NAME_OF_ENTITY is -- Declarations

component declarations signal declarations
begin

-- Statements
component instantiation and connections
:

end architecture_name;

9.1 Component declaration

Before components can be instantiated they need to be declared in the architecture declaration section or in the package declaration. The component declaration consists of the component name and the interface (ports). The syntax is as follows:

[bookmark: page40]component component_name [is]

[port (port_signal_names: mode type; port_signal_names: mode type;

:

port_signal_names: mode type);] end component [component_name];

The component name refers to either the name of an entity defined in a library or an entity explicitly defined in the VHDL file (see example of the four bit adder).

The list of interface ports gives the name, mode and type of each port, similarly as is done in the entity declaration.

A few examples of component declaration follow:

component OR2

port (in1, in2: in std_logic; out1: out std_logic);

end component;
[image:]
component PROC

port (CLK, RST, RW, STP: in std_logic;
ADDRBUS: out std_ logic_vector (31 downto 0); DATA: inout integer range 0 to 1024);

component FULLADDER port(a, b, c: in std_logic;
sum, carry: out std_logic); end component;

As mentioned earlier, the component declaration has to be done either in the architecture body or in the package declaration. If the component is declared in a package, one does not have to declare it again in the architecture body as long as one uses the library and use clause.

9.2 Component Instantiation and interconnections

The component instantiation statement references a component that can be

· [bookmark: page41]Previously defined at the current level of the hierarchy or

· Defined in a technology library (vendor’s library).

The syntax for the components instantiation is as follows,

instance_name : component name

port map (port1=>signal1, port2=> signal2,… port3=>signaln);

The instance name or label can be any legal identifier and is the name of this particular instance. The component name is the name of the component declared earlier using the component declaration statement. The port name is the name of the port and signal is the name of the signal to which the specific port is connected. The above port map associates the ports to the signals through named association. An alternative method is the positional association shown below,

port map (signal1, signal2,…signaln);

in which the first port in the component declaration corresponds to the first signal, the second port to the second signal, etc. The signal position must be in the same order as the declared component’s ports. One can mix named and positional associations as long as one puts all positional associations before the named ones. The following examples illustrates this,
[image:]
component NAND2

port (in1, in2: in std_logic; out1: out std_logic);

end component;

signal int1, int2, int3: std_logic; architecture struct of EXAMPLE is

U1: NAND2 port map (A,B,int1);

U2: NAND2 port map (in2=>C, in2=>D, out1=>int2); U3: NAND3 port map (in1=>int1, int2, Z);
…..

For an example, we will use the following NOR latch which is similar to one in figure .

[bookmark: page42][image:]

And here is the entity and architecture blocks of the structure design:

library IEEE;

use IEEE.std_logic_1164.all;

-- NOR gate entity design

entity nor_gate is

port (a,b : in std_logic; c : out std_logic);
[image:]
end nor_gate;
architecture my_nor of nor_gate is begin

c <= a nor b; end my_nor;

-- begin latch design

entity latch is

port (s,r : in std_logic; q,nq : out std_logic);

end latch;

architecture flipflop of latch is

-- NOR gate component declaration

component nor_gate

port (a,b : in std_logic; c out std_logic); end component;

begin

[bookmark: page43]-- instantiation of two NOR gates

n1 : nor_gate

port map (r, nq, q); n2 : nor_gate

port map (s, q, nq); end flipflop;

A number of concepts are illustrated by this example, so let's explore each of them. First, we have the component declaration placed in the architecture block preceding the architecture body. It starts with the reserve word component followed by the component's name, in this case - nor gate. As with an entity, signals for the component are declared using the port function. In this example we have two inputs, a and b and one output, c. An end component statement completes the declaration. This creates a component OBJECT. Notice that the nor gate component and its corresponding entity declarations are identical except for the component and entity reserved words. The importance of this, is that we will declare two instances of this object, each of which will inherit the properties of the nor gate component object.
[image:]
The first instance is n1 and notice that its declaration is placed in the body of the architecture block. This means that the architecture wants to use this instance for the latch. In order to inherit nor _gate properties, the signals used by the instance must be MAPPED from the nor_gate object. This is accomplished using the port map statement. The signals mapped must be in the same order as the component object. In this case r and nq inherit the input function from a and b of the nor_gate object. q gets the output function from c in the nor_gate component.

In this simple example, there are no extra interconnecting signals. All connections are established using signals of the NOR gate components. Here is a little different design that incorporates interconnecting signals between components.

[bookmark: page44]10. FUNCTIONS

A function in VHDL is similar to functions in most upper level languages. It is a subprogram that accepts input parameters and returns a single result. The syntax for a function declaration is:

function function_name (formal parameters) return return_type is

variable declarations; begin

statements;

return return_variable_name; end function_name;

Here is an example of a function that computes the parity on a data array of unspecified length:

function parity (word : std_logic_vector) return std_logic is
variable tmp : std_logic; begin
[image:]
for i in word'range loop tmp : = tmp xor word(i);

end loop; return tmp;

end parity;

When the function is called, a specific variable of std_logic_vector type is passed to it. A tmp variable of std_ logic type is declared and, by default, is initialized to zero. The for loop exclusive ORs tmp with each bit of the word array. The loop repeats from 1 to the number of bits in the array (word'length). The final value of tmp (the even parity state of the word passed in) is passed out of the function via the return statement.

Function Call

Functions are called using a single assignment statement that has the general form of:

variable <= function_name (actual parameters);

[bookmark: page45]The actual parameter(s) passed to the function must be of the same type and length (if a specified array size was made) as the formal parameter(s) in the function declaration. The returned value of the function is stored into the variable on the left side of the expression.

Function call example:

even_parity <= parity(data_bus_in);

This function call accepts the vector array data_bus_in and calculates its parity, returning the even parity result to the variable even_parity.

12. PROCEDURES

A procedure like a function is a subprogram that must first be declared and then called. Unlike the function, procedures can pass out numerous results through its parameter list. Because of this, parameter declarations must include an in or out mode declaration as well as a data type indication. The syntax for declaring a procedure is:
[image:]
procedure procedure_name (formal parameter : mode type, formal parameter : mode type) is

variable declaration; begin

statements;

end procedure_name;

Since there are possible multiple results, procedures are not called using an assignment statement like a function. Instead they are called using this format:

procedure_name (actual parameter list);

The parameter list contains the names of the actual parameters to be passed in and out of the procedure and while they do not have to have the same identifier names as those in the declaration, they must follow the exact order as well as having the same mode and type as the formal parameters in the procedure declaration. The following procedure returns two results Z and ZCOMP based on the values of words A and B and the type of operation to be performed on them.

[bookmark: page46]type op_code is (ADD, SUB, MUL, DIV, LT, LE, EQ);

.

.
procedure ARITH_UNIT (A, B : in integer; op : in op_code; Z : out integer; ZCOMP : out boolean) is
begin
case op is

when ADD => Z := A + B; when SUB => Z := A - B; when MUL => Z := A * B; when DIV => Z := A / B;

when LT => ZCOMP := A < B; when LE => ZCOMP := A <= B; when EQ => ZCOMP := A = B; when others => Z := Z;

end case;
end ARITH_UNIT;

Somewhere, preceding the procedure declaration is an enumerated user type declaration creating a new type op_code with the values indicated in the parenthesis. The procedure ARITH_UNIT is declared with three input parameters passed into the procedure - A and B which is integer types and op which is an op_code type. Two output parameters, integer Z and Boolean ZCOMP contain the results passed out by the procedure. In the body of the procedure, op is checked for a value using a case statement and dependent on that result, one of the when assignments are performed. An example statement that calls this procedure is:
[image:]
ARITH_UNIT (word1, word2, operation, result, comp_check);

Word1 and word2 are passed in as parameters A and B. operation enters as parameter op. The results of the procedure are passed out through parameters Z and ZCOMP to variables result and comp_check.

[image:]
image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

